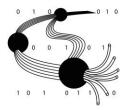
O-Band Bismuth-doped Fiber Amplifier (Multi-Channel)

Key Features

- High output power
- Similar gain & noise figure as typical EDFA
- Lower power consumption compared to conventional Raman amplifier
- Distortion-free amplification


2U Rackmount Casing

Description

Amonics' O-band Bismuth-doped fiber amplifier (BDFA) uses bismuth-doped fiber as the gain medium. The multichannel BDFA features flattened gain across the operating wavelength range and very low noise figure. The silicabased Bismuth-doped fiber offers the similar fundamental advantages as erbium-doped fiber used for amplification in the C and L bands.

The turnkey microprocessor-controlled BDFAs provide illustrative alarms and status indicators. An integrated RS232 computer interface enables easy control, diagnostic functions and data acquisition.

Application

Datacom Network

IEC- S.Level No.		Pout Loss - 35.80 dB Pin(dBm)		1 1.00			0.01 dB/nm Ga	in Vari 2.65 dE
	1 270.075	- 5.80	13.5		29.99	0.09		6.07
	1 290.040	- 6.67	14.6		29.23	0.09		5.21
	1 310.335	- 6.73	14.3		29.82	0.11		4.40
4	1 331.950	- 6.30	12.3	5.	32.46	0.10	7 18.64	4.62
Res: 0. VBW :	100Hz	Sm: Off	Smplg : Intvl :	2001p Off	t Sw	pAvg :	1[****]	
20.0dBm	1 29	Peak 9.040 0 nm 14.62 dBm						Normal
	REF			7		1		
-30.0dBn						-	-	
								A REAL PROPERTY.
10.0dB / div	2	1.00	naniere					
/ urv	www.	Offset	MAM man	untitering		Horner		and the second s
-80.0dBn	Lev	el Offset						Opt. Att On
A Fix	1 250.00 n	m 1 ī Cal B-A	1.00 nm/div Wri Oif	Fix	1 305.0 Cal E-D		in Vacuu	im 1 360.00 ni Fix Writhin

Typical ABDFA-O-DWDM-19 Optical Spectrum

ISO 9001 : 2015 Certificate No.: CC 5346

Our product is manufactured under a HKQAA ISO 9001 certified quality management system. The ISO 9001:2015 certification applies to the Hong Kong production site only.

O-Band Bismuth-doped Fiber Amplifier (Multi-Channel)

Specifications

Model	ABDFA-O-S-DWDM-19	ABDFA-O-L-DWDM-20
Operating Wavelength	1270 nm to 1330 nm	1290 nm to 1360 nm
Composite Input Power	-30 to 0 dBm	-30 to 0 dBm
Composite Output Power @ 0 dBm composite input power	Min. 19 dBm	Min. 20 dBm
Noise Figure @ 0 dBm composite input power	Typ. 6.5 dB, Max. 7.0 dB	Typ. 6.5 dB, Max. 7.0 dB
Gain Flatness	Max. ±1.5 dB	Max. ±1.5 dB*
Input / Output Isolation	Min. 30 dB	Min. 30 dB
Control Mode	ACC	ACC

* Measured at wavelength range 1310 – 1350 nm

General Parameters

	Value
Operation Temperature	0 to +40 °C
Storage Temperature	-10 to +70 °C
Power Supply	90 – 240 VAC, 47 – 63 Hz
Dimensions	485(W) x 515(D) x 90(H) mm
Mechanical Safety Control	Key-lock switch, BNC interlock key
Optical Power Monitoring	Output power, Input power (optional)
Remote Control Port	DB-9 female (RS232), Control software included, RJ-45 (TCP/IP Ethernet) (optional)
Protection	Pump Power Protection
Optical Connector	FC/APC, FC/UPC, SC/APC, SC/UPC
Optical Fiber	SMF-28

Ordering Information

Product Code ABDFA-O-S-DWDM-aa-b-cc ABDFA-O-L-DWDM-aa-b-cc	aa : Composite Output Power in dBm b : R for 19" Rackmount cc : FA for FC/APC, FC for FC/UPC, SA for SC/APC, SC for SC/UPC
---	--

Amonics undertakes continuous and intensive product development to ensure its product performance at the highest technical standards. As a result, the specifications in this document are subject to change without notice.

Amonics Limited (Hong Kong)

14/F, Lee King Industrial Building, 12 Ng Fong Street, San Po Kong, Kowloon, Hong Kong Tel :+852 2428 9723 Fax :+852 2428 9704

 Room 902, Unit 1 Joy Mansion, NO.99 Chaoyang North Road, Beijing China 100123

 Tel :+86 10 8478 3386
 Fax :+86 10 8478 3396

 Email: contact@amonics.com
 Website: www.amonics.com

